Russel E. Rhodes January 27, 2011

- Shuttle Ground Operations Efficiencies Technologies Study (SGOE/T)
 - Determine why it takes so long and cost so much
 - What are the major time and cost drivers
 - Need to improve Operability and Maintainability
- Lessons learned: A Major Cost Driver was Propulsion Systems
 - Study was initiated: OPERATIONALLY EFFICIENT PROPULSION SYSTEM STUDY (OEPSS)
 - Today's space vehicle propulsion systems are very complex
 - Lack of major vehicle functional integration creates duplication of system major components (fluid tanks, pressurization systems, etc)
 - Too many interfaces (flight to flight & flight to ground)
 - Directly influences complexity of ground launch infrastructure and total flight/ground systems support logistics (includes hardware and commodity logistics suppliers)
 - Design done without using an integrated approach for total vehicle
 - Stove pipe approach optimized each subsystem as a stand-a-lone
 - Too costly to operate and not efficient (NOT AFFORDABLE and SUSTAINABLE)

OEPSS identified operations concerns and impacts (Causes and Effects)

No.	No.
1 Closed aft compartments	14 Ordnance operations
1A Fluid system leakage	15 Retractable T-0 umbilical carrier plates
2 Hydraulics system (valve actuators and TVC)	16 Pressurization system
3 Ocean recovery/refurbishment	17 Inert gas purge
4 Multiple propellants	18 Excessive interfaces
5 Hypergolic propellants (safety)	19 Helium spin start
6 Accessibility	20 Conditioning/geysering (LO2 tank forward)
7 Sophisticated heat shielding	21 Preconditioning system
8 Excessive components/subsystems	22 Expensive helium usage – helium
9 Lack of hardware integration	23 Lack of hardware commonality
10 Separate OMS/RCS	24 Propellant contamination
11 Pneumatic system (valve actuators)	25 Side-mounted booster vehicles (multiple
12 Gimbal system	stage propulsion systems)
13 High maintenance turbopumps	26 Component internal leakage

- OEPSS provided data (volume1) related to these inefficiencies documenting the manpower and time to process these systems
- OEPSS provided definition of the listed 26 concerns (volume 2)
- OEPSS defined suggested operations technologies that could improve ground processing these propulsion systems
- OEPSS defined design concepts for new vehicle propulsion systems (volume 4) New technologies and concepts must be included during the design concept phase for any new vehicle.
- The above 4 volumes were completed during the first phase of the OEPSS and there are several additional volumes available including a complete video for your benefit of understanding

Recommendations:

- To achieve operationally efficient propulsion systems for future space launch vehicles (Space Transportation Systems), the designer/developer needs to understand the lessons learned from the present Space Shuttle propulsion systems so that the operational considerations drive the design concept through development for greater simplicity and operability.
- Reviewing OEPSS and the many follow-on studies by the Space Propulsion Synergy Team (SPST) is an excellent way for designers to obtain the needed understanding to produce an affordable/sustainable Space Transportation System of the future
 - These new designs need to be designed as an integrated entity that is inclusive of all the propulsion functions including the ground to be considered as a total system, e.g., final optimization must be from an integrated system perspective with affordability/sustainability as the primary driver and not simply the traditional performance with all other attributes as figure of merit considerations.

OEPSS GENERIC CORE VEHICLE Engine Systems Processing Duration and Manpower

			Dur.	Head	
Oper.	ОМІ	Activity	Hrs.	Count	Manhours
0R002	-	Vehicle at Processing Facility	-	-	
0R201	V5003	Tail cone removal POSU	34	20	680
0R211	V5003	Tail cone removal	8	19	152
0R214A	V5043	Remove SSME heat shields & carri	iers POSU 9	12	108
0R214	V5043	Remove SSME heat shields & carri	iers 103	12	1236
0R737	V1011.01	SSME engine drying POSU	20	3	60
0R041/0.41	1A V1011.01	SSME engine drying	24	7	168
0R738	V1011.01	SSME engine drying P0I	5	3	15
0R519	V5058	SSME engine removal POSU	64	14	896
0R596	V5058	Remove SSME 1/2/3	32	14	448
0R018A	V3508	Close aft swing platforms	9	3	27
0R018	V3508	Close aft swing platforms	9	3	27
0R592	V3508	Configure swings	4	3	12
0R431	<u>-</u>	SSME offline opers.	672	*18.7	12544
0R559	V5005	Install SSME1	12	15	180
0R560	V5005	Install SSME2	12	15	180
0R561	V5005	Install SSME3	12	15	180
0R571	V1011.04	Hex leak checks	50	3	150
0R091	V1011.05	HGM/LOX/LH2 L&F	54	4	216
0R104	V1011.06	SSME FRT	12	6	72
0R105	V5043	Install heat shields and carriers	72	10	720
0R552	V1009.03	HE sys flt pres ISO test POSU	16	8	128
0R553	V1009.03	HE sys flt pres ISO test	24	8	192
		TOTAL	1215		17,589

* Rocketdyne manpower for SSME offline O&M

	Techs	Quality	Engrs.	
1st Shift	8	3	12	
2nd Shift	8	3	2	
3rd Shift	6	2	1	
Shop support	6	3	2	
	28	11	17	TOTAL - 56 Heads

OEPSS GENERIC CORE VEHICLE Hydraulics and APU Processing Duration and Manpower

Oper.	ОМІ	Activity	Dur. Hrs.	Head Count	Manhours
0R002		Vehicle at Processing Facility	-	-	
0R717	V5U02/V1153	APU H20 VLVS R&R/Deservice POSU	32	5	160
0R718	V5U02/V1153	APU H20 Deservice/Service	80	8	640
0R719	V1153	APU H20 Service secure	4	4	16
0R611	V1078	APU lube oil service POSU	8	5	40
0R071	V1078	APU lube oil service	26	10	260
0R733	V1078	APU lube oil service POI	8	4	32
0R600	V1010	Hyd. sys. fill & bleed POSU	24	5	120
0R452	V9002	Hyd. tray/hose configure	10	11	110
0R068	V9002.07	Hyd Power-up POSU	17	3	51
ORAA4	V9002.1	Hyd. Power-up/down	2	11	22
0R525	V1010	Hyd.sys. fill & bleed	32	14	448
0R053	V6012	Hyd. sys. inspect	64	4	256
0R083 A	-D V1196/1158	APU catch bottle drain	96	23	2208
0R572&A	V1078	APU lube/oil deservice POSU (STSX .67)*	64	10	640
0R573	V1078	APU lube/oil deservice	9	10	90
0R532	V1235	APU fuel vlv. resistance test	40	5	200
0R533	V1019	APU leak & functional POSU	16	10	160
0R741	V1019	APU leak & functional	176	10	1760
0R741A	V1019	APU leak & functional POI	48	8	384
		TOTAL	756		7597

^{*} Contains POSU for 3 procedures; one of which is for OMS/RCS hypergols not used by generic core.

OPERATIONS AND DESIGN MUST BE INTERACTIVE

STS MPS SYSTEM Wille Jan. S.

